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A new type of planar crystallization-front instability is found and studied: 
dynamic instability with respect to front-velocity perturbations, independent 
of morphological stability. 

The features of the supermolecular structure of solids obtained by crystallization from 
the liquid phase depend to a significant degree on the stability of the crystallization front 
with respect to perturbations of various sorts. Therefore, study of the stability of the 
solidification process is important in determining the causes of inhomogeneity development 
in the solid phase and for developing methods for active interference in the solidification 
process to eliminate or modify such inhomogeneities. 

The type of stability usually studied is so-called morphological instability of the 
crystallization front with respect to small perturbations of its form (see, for example, 
[1-4]). Such instability leads to the appearance of various cellular structures, to forma- 
tion of longitudinally spatially periodic structures during solidification of eutectic 
alloys, etc. [5, 6]. 

In addition, there exist many examples of the establishment of oscillatory regimes of 
front motion (rhythmic crystallization), unrelated to morphological instability, but also 
leading to the development of periodic inhomogeneities, in particular, transverse layered 
structures (individual layers normal to the direction of front motion, with layer form re- 
flecting the front configuration at the time of its formation) [7, 8]. 

Formation of such inhomogeneities has+traditionally been ascribed to either various 
external factors and influences (convective motion of the melt, random temperature oscilla- 
tions and other process conditions, rotation of the crystallization bath, external electro- 
magnetic fields, etc.) [9], or to the possibility of self-excitation of oscillatory solidifi- 
cation regimes in cooled melts containing an impurity which is driven back from the crys- 
tallization front. The main physical cause of this self-excitation is to be found in the 
specific properties of the two-phase zone which may form near the front due to the appear- 
ance of dendrites or homogeneous formation of crystalline nuclei in a locally supercooled 
melt [i0], the inclination of the solid solution to layering into isomorphous layers of 
various compositions [ii], and certain other factors. It often remains unclear to what de- 
gree conclusions on the generation of self-oscillations and their unique features actually 
reflect the objective properties of real systems and solidification regimes, or to what de- 
gree they are consequences of a priori and usually poorly justified assumptions as to the 
structure and properties of the two-phase zone or the kinetics of the transfer processes 
occurring near the front. 

It will be shown below that under certain conditions even the steady-state solidifica- 
tion process corresponding to uniform motion of a morphologically stable planar crystalliza- 
tion front will destabilize. The possibility of such instability, not related to loss of 
front morphological stability, nor the presence of a two-phase zone ahead of the front, nor 
to the affinity of the solid phase to layering, was predicted previously in [12], and was 
later subjected to undeserved criticism in a number of studies (see, for example, [5]). The 
results of the present study demonstrate that this assumption is completely valid. 

We will consider a planar crystallization front moving with a velocity u(T) = dE/d~ 
(the melt corresponds to ~ > E(T)). Considering the thermophysical characteristics and dif- 
fusion coefficient of the impurity to be homogeneous, and neglecting the change in specific 
volume upon solidification and the possibility of formation of a two-phase zone ahead of 
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the front, independent of whether this is caused by penetration of dendrites into the melt 

or formation of crystalline nuclei within the melt, we write the one-dimensional diffusion 
and thermal conductivity equations in the melt: 

aa 02a 00 020 
= D - - , - - - - a ~ ,  ~ > E ( x )  (1) 

and t he  c o r r e s p o n d i n g  bounda ry  c o n d i t i o n s :  
u ('0 a + D O~/O~ = ku (x) a, ~ = E (~); 

)h 00/~?~ + oLu (x) = a (0 - -  03, ~ = 2] (x). (2) 

The first condition of Eq. (2) reflects the continuity of the impurity flux; the dis- 
tribution coefficient k is considered constant. The second condition on the front corre- 
sponds to continuity of the thermal flux with consideration of the heat of phase transition; 
for simplicity, thermal conductivity in the solid phase will not be considered, and heat loss 
will be described phenomenologically by introducing an effective heat-liberation coefficient 

and external heat-sink temperature @l" 

Additional conditions on the front are obtained from the requirement of equality of the 

front temperature to the phase transition temperature, which is dependent on impurity con- 
centration. We write: 

0 ~- 0, - -m~,  ~ = ~ (~), (3) 

where the coefficient m may be either positive or negative. 

At some constant distance from the front in the depths of the melt the temperature and 
concentration will be regarded as fixed~ i.e., we have the boundary conditions 

0 = 0=, a = c~, ~ = X ( ~ ) + H ,  (4) 

which can be realized physically in production of a single crystal by the Czochralski method, 
as well as in other cases of crystallization. Of the five boundary conditions, Eqs. (2)- 
(4), four are required for correct formulation of the boundary problems for Eq. (i), while 
one is needed to determine the unknown front velocity. Initial conditions for the tempera- 
ture and concentration fields can be varied over wide limits, 

For uniform motion of the crystallization front at velocity Uo the problem of Eqs. (I)- 
(4) can be solved easily. We have 

a0 c*{l" 1 - - k  exp [ Uo ]} 
= + k - -  - 5 -  (~ - . o ~ )  , 

0 o = 0 ~ - - 0 " {  exp [ - -  Uoa ( ~ -  UoX)] - - exp  ( - -  u~ ' (5) 

where 

Equations (3)-(5) 
uo. At sufficiently high H to the accuracy of exponentially small terms we obtain 

~AO~ 
U 0 ~ 

p (L + CA0~) 

A01 = 0, -- mc~/k - -  0z, A02 = 0~ -- (0, -- mc~/k). 

Removal of heat from the front to the external sink corresponds to A0x > 0, while 
solidification under these conditions occurs at AS= > 0. Solidification will also occur 
with heat supply to the front from without h0~ < 0, if simultaneously AS= < 0. The latter 
may correspond not only to a supercooled, but also to an infinitely superheated melt, if 

C* ~--- C~ U o H 
1 + k-~(1 - - k ) e x p ( - - h )  D 

8 " -  a(O=r , e -- D ,  C = ~__A__~ , (6) 
pCuo + a [ 1 - -  exp (-- eh)] a pa 

a l l o w  c o n s t r u c t i o n  of  a t r a n s c e n d e n t a l  e q u a t i o n  f o r  d e t e r m i n a t i o n  of  

(7) 

simultaneously the conditions m > O, k > i or m < O, k < 1 are fulfilled. Although usually 
m > O, k < 1 or m < O, k > I, we will perform the analysis below for arbitrary m and k. 
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Similarly, fusion may occur not only with supply of heat to the front, but also with loss 
to an external sink. From the relationships presented it is evident that at sufficiently 
small k (intense removal of the impurity from the front) the real solidification process 

can scarcely be steady state, even if the front is morphologically stable. In connection 
with this, [13] reached the somewhat unexpected conclusion that the diffusion equation it- 
self is inapplicable. 

It will be convenient to introduce the following dimensionless variables and param- 

eters: uo uo k ~ -- 1 
t - -  D T, {x, X(t)}  = - D - -  {~' E(~)}, c - -  1 - - k  c* 

{T, Tz, T , , T ~ } = - - I  {O, O~, O,, O~}, ~ =  p L u o ,  bo = pCu_.__Lo 
mC* ~mC ~ 

(8) 

Equation (i), conditions (2)-(4), and relationships (5)-(7) can easily be expressed in the 
dimensionless variables of Eq. (8). 

The study of stability of the steady-state solidification process with uniformly moving 
front must be based on solution of a linearized problem obtained from the dimensionless 
analog of Eqs. (1)-(4), with initial data for the perturbed dimensionless concentration and 
temperature fields [14]. Solution of such problems is quite cumbersome, so that we will use 
a simplified method for analysis of the evolution of small perturbations, which corresponds 
to specification of initial conditions for the concentration field perturbation in fully 
defined form. As will be shown in the appendix for the case h § ~ this has no effect on 
conclusions as to stability or instability of the process. 

We assume that the perturbed dimensionless fields c(t, x) and T(t, x) as well as the 
dimensionless front coordinate can be expressed in the form 

c = c o + c~, T = To + T1, X = t + X 1, 

[ c , l ~ C o ,  [ T x l ~ T o ,  I X I I ~  1, 

where the dot indicates differentiation with respect to dimensionless time, and the expres- 
sions for co and To follow from Eqs. (5) and (8). 

For liquids usually ~ = D/a ~ i0-", i.e., the time 72/a for relaxation of the tem- 
perature field in a region with linear dimension Z is much less than the analogous time 12/D 
for the concentration field. Considering that change in the position of the crystallization 
front is limited by the slower diffusion process, it is natural to use the quasisteady-state 
approximation for defining the temperature T(t, x). This quasisteady-state hypothesis sig- 
nificantly simplifies calculations, but is not of principal significance in the sense that 
all results can easily be generalized to significantly nonsteady-state situations. Using 
this assumption, from heat-balance condition (2) in the variables of Eq. (8) we obtain 

(0 = T (t, X) = Tz + b (X) T ~ X  + ~X 
1 + b ( x ) X  ' 

b(X) = bo [1 - - e x p  ( - -  ehX)] -~, (9)  

with ~, h, and bo being defined in Eqs. (6) and (8). The value of the dimensionless front 
temperature in the constant front-velocity regime is obtained from Eq. (9) at dX/dt = i. 
Therefore, perturbation of the dimensionless front temperature can be written to an accuracy 
of terms first order in the perturbations as 

T~ (t, X) = T(t ,  X) - -  To(t, X) := k -~ (1 - -  k) RRa, ( l O )  

where 

R = ( T ~ - -  T,) (b' - -  b") + ~ (1 + b") k 
(I -?  b') 2 1 - -  k 

b' = b~ ; b" = ~hb~ exp ( - -  ~h) (11 )  
1 - -  exp ( - -  ~h) [ 1 - -  exp ( - -  ~tz)] ~ 
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To the accuracy of terms first order in the perturbations inclusive the values of ci 
and ~c~/;x at x = X(t) can be replaced by their values at x = t, which corresponds to a 
front moving with constant velocity Uo. To the same accuracy we may write 

co ly-x(t} = Colx=~ + X1 (Oeo/OX)x: ~ 

and a similar expression for ;co/~x. All this permits "removal" of boundary conditions (2) 
and (3), transformed to dimensionless form, from the plane x = X(t) to the plane x = t. As 
a result, from Eq. (3) and the first expression of Eq. (2), after calculations we obtain 

RX~ -- XI + cll~=t ---- 0, (12) 

acl I : O. ) Q . + k X ~ + ( 1 - - k ) c l l x : t +  Ox ,~:t  

For the func t ion  c3.(t, x) we have from Eqs. (1) and (4) 

OQ d2c~ 
- -  - -  - -  X > ~ ]  C 1 = O ,  X = t 4 - 1 -  h: ,  (13) 

5t Ox 2 ' 

while the value of c~(t, t) is, generally speaking, an arbitrary function of t, and c~(0, x) 
is an arbitrary function of x, satisfying the condition of Eq. (13) at x = t + h. It can 
be shown that the stability or instability of the uniform crystallization-front motion does 
not depend on the choice of these functions. We take 

c~ (t, x) = ~I" (x - -  t )e  ~t, X~ (0  = Ve ~t �9 (14) 
Then 

W ( z ) : C {  exp [ ( l - -Y)z  ] _ e x p  [yh ( l + ? ) z  ]} 
2 2 ' 

? =- V]+4~. (15) 

Using Eqs. (14) and (15) in Eq. (12), we obtain a homogeneous system of linear alge- 
braic equations in the constants C and V, the determinant of which is 

h(~, h, R) =(~+k)(l--eVh)+(l--Rs [ 72 21 +(l +?)eV~+(l --k)(l--e vh) ]. (16) 

The eigenvalues k, which define the behavior of the perturbations, are the roots of the equa- 
tion h = O. In particular, for h >> 1 we have from Eqs. (ii) and (16) 

,-~ 1 (T~ -- T~) bo + ~ k N _ _  e -h, Ro = (17) 
kRo (1 +bo) 2 1 - -k  

In the case of greatest practical interest m(l -- k) > 0 (increased capture of impurity 
by the solid phase, accompanied by increase in phase-transition temperature with increase 
in concentration, or removal of impurity by the moving front, accompanying decrease in 
liquidus temperature with increase in concentration). Then, as follows from Eq. (17), the 
steady-state solidification process with uniform front motion is unstable at any parameter 
values. In fact, it follows from the instability condition that Ro > 0; if we write Ro from 
Eq. (17) in dimensional variables with the aid of Eq. (8) we see that this quantity has the 
same sign (at 0~ > 0 Z) as m(l -- k). Similarly, for the case m(l -- k) < 0 we arrive at the 
conclusion that the solidification process is always stable. In principle, these conclu- 
sions remain valid even if the condition h >> 1 is not satisfied, as can be seen from analy- 
sis of determinant (16). 

We note that as h § =, i.e., on transition to the problem of a melt occupying an in- 
finite semispace, the root k from Eq. (17) vanishes, which corresponds to neutral stability. 
It is possible that this is related to the fact that proof of the presence of dynamic in- 
stability has not been presented previously. 

The physical cause of instability development in the cases indicated is the appearance 
of concentration supercooling ahead of the front moving at constant velocity. In fact, near 
the front supercooling increases with removal from the front, since on the front itself it 
is eliminated by the heat of phase transition. Upon a virtual increase in front velocity 
the front displaces into a region with higher "initial" supercooling, which leads to further 
increase in velocity. In fact, because of the nonlinearity of Eq. (3), which is not con- 
sidered herein, at a certain distance from the front supercooling reaches a maximum. There- 
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fore, the growth in velocity is replaced after some time by a decrease due to an increase 
in the amount of heat upon phase transition and a corresponding decrease in supercooling. 
As a result, self-oscillating front motion develops. 

The conclusion reached above as to the possibility of dynamic instability with respect 
to front-velocity perturbations without loss of morphological stability has been confirmed 
by many experiments (see, for example, [8]) and agrees with the physical evaluation of the 
situation presented in [12]. Doubts of the validity of the hypothesis of [12] are based 
primarily on observations in which axial segregation of the impurity was accompanied by tem- 
perature fluctuations [5, 7], whence it has usually been concluded that these fluctuations 
are the primary cause of the segregation. Such a categorical conclusion is hardly justi- 
fiable, since the self-oscillating process which develops due to disruption of stability of 
uniform front motion produces oscillations not only of front velocity, but also front tem- 
perature, i.e., the latter are a result, not a cause of the instability. (This, of course, 
does not eliminate the possible effect on segregation of independent temperature oscillations 
produced by external causes. The corresponding induced front-velocity and impurity-concen- 
tration oscillations can be found by solution of Eq. (13), or for weak temperature oscilla- 
tions, from solution of a system of linear inhomogeneous equations easily obtained there- 
from. Temperature oscillations of the external heat sink e I can be regarded as periodic 
modulation of a parameter which can lead to change in the form of the instability regions 
in the parametric plane.) 

Analysis reveals that, in principle, both soft and hard regimes of disruption of sta- 
bility of uniform planar crystallization-front motion can be realized. In the first case 
front motion is established with a velocity which performs almost harmonic oscillations 
relative to the mean value, which may be studied by retaining terms of higher order of small- 
ness in the perturbations in the equations. 

Thus, there are two basic types of instability of the steady-state solidification re- 
gime: morphological (with respect to perturbations of front form) and dynamic (with re- 
spect to velocity perturbations), both types being, in principle, of equal significance. 
Morphological instability has been studied several times without consideration of dynamic 
instability, in particular, in [1-5], while dynamic instability has been treated without 
consideration of morphological in the present study. It is significant that for disruption 
of the stability of a uniformly moving front there is no necessity that it simultaneously 
become morphologically unstable, while for disruption of morphological instability it is 
necessary that the front become dynamically unstable. For the case m(l + k) > 0 a uniformly 
moving front is dynamically unstable at any parameter values, which cannot be said of mor- 
phological instability. 

In the general case these types of stability loss are interrelated and therefore, 
generally speaking, should be studied simultaneously. The criteria for onset of instability 
of either type obtained without consideration of the other type of instability may not be 
correct, since the presence of instability of the second type may cause readjustment of the 
temperature and concentration fields which affects developmentof instability of the first 
type. 

APPENDIX 

The procedure used in the present study is not completely accurate, since the stability 
problem was not considered as a problem with initial data [14]. However, it can be shown by 
the method proposed in [14] that the simplification used is justifiable. We will demonstrate 
this for the case where the melt occupies an infinite volume (a similar analysis can be per- 
formed for finite h). 

As was shown above, to determine the temperature field the quasisteady-state approxima- 
tion can be used, so that there is no need to specify initial conditions for temperature. 
For definiteness we will write the initial conditions for the impurity concentration field 
in the form ~(0, ~) = c~, which in the variables of Eq. (8) is equivalent to c(0, x) = 0. 
The material-balance condition of Eq. (2) and condition (3) in the variables of Eq. (8) 
appear as 

[k + (1 - - k ) c l X  + Oc/Ox = O, T , - -  1 --(1 - -k)  k-~c= 9, x : X ( t ) ,  (18) 

where ~ i s  de te rmined  by Eq. (9 ) .  
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The solution of the equation following from Eq. (i) for the dimensionless concentration 
satisfying the boundary condition at infinity and the initial condition c(0, x) = 0 can be 
written in the form of the thermal potential of a simple layer: 

j" ~ (~) exp , (19)  

w h e r e  ~ ( t )  i s  some unknown f u n c t i o n .  U s i n g  t h e  p r o p e r t i e s  o f  t h e  t h e r m a l  p o t e n t i a l  and  
t r a n s f o r m i n g  i n  t h e  s t a n d a r d  m a n n e r  t o  t h e  l i m i t  x § X ( t )  + 0,  i t  i s  e a s y  to  o b t a i n  f r o m  Eq. 
(19)  e x p r e s s i o n s  f o r  t h e  q u a n t i t i e s  c and  ; c / ; x  on t h e  c r y s t a l l i z a t i o n  f r o n t .  As a r e s u l t ,  
we o b t a i n  f o r  d e t e r m i n a t i o n  o f  t h e  unknown f u n c t i o n s  v ( t )  and  X ( t )  t h e  i n t e g r o d i f f e r e n t i a l  

t 

~-o 2 V - $  ~ (g) exp 4 (t - -  ~) ] / t  _ -~ 
0 

equations 

4 - -  ~ (~) [~ + (X (0  - -  X (~))] exp - -  4 (t - -  ~) (t - -  ~)3/2 k ( T ,  - -  9) 2 ,  

0 

f o l l o w i n g  f r o m  c o n d i t i o n s  ( 1 8 ) .  I n  t h e  s t e a d y - s t a t e  r e g i m e  a t  c o n s t a n t  f r o n t - m o t i o n  v e l o c i t y  
by  d e f i n i t i o n  X ( t )  = t ,  V ( t )  = ~o .  I n  t h i s  c a s e  a f t e r  s i m p l e  c a l c u l a t i o n s  we a r r i v e  a t  t h e  
steady-state impurity-concentration distribution obtained above, while 

( T . - - 1 - - 9 0 )  k Tl + boT~ + 
~ 0 =  -- 1, % =  , (21)  

1 - - k  1 + b  0 

w h e r e  90 i s  t h e  t e m p e r a t u r e  on t h e  f r o n t .  

Such a s o l u t i o n  i s  r e a l i z e d  a s y m p t o t i c a l l y  a s  t § 0% We a s s u m e  t h a t  a t  a t i m e  t l  >> 1,  
when t o  a h i g h  a c c u r a c y  X ( t )  = t ,  V ( t )  = Vo ( i . e . ,  a s o l i d i f i c a t i o n  r e g i m e  w i t h  c o n s t a n t  
f r o n t - m o t i o n  v e l o c i t y  h a s  b e e n  e s t a b l i s h e d ) ,  s m a l l  p e r t u r b a t i o n s  a p p e a r  i n  t h e  f r o n t  c o o r d i -  
n a t e ,  its derivatives with respect to t~ and the function ~(t). We take for t > tl 

X ( t ) =  t + z ( 0 ,  ) ~ =  1 + v(t), Iv(t)] =[z( t ) l<< I, 
(22)  

(t) = 1 + w (t), Iw (t)t << 1, Iz (/)l << t - -  6 

S u b s t i t u t i n g  Eq. (22)  i n t o  Eq. (20)  and  c o n s i d e r i n g  o n l y  t e r m s  o f  f i r s t  o r d e r  i n  t h e  
p e r t u r b a t i o n s ,  we e a s i l y  o b t a i n  i n t e g r a l s  d e s c r i b i n g  t h e  p e r t u r b a t i o n  c . ( t ,  x)  o f  t h e  d i m e n -  
s i o n l e s s  c o n c e n t r a t i o n  f i e l d  c ( t ,  x)  and  ~ c : ( t ,  x ) / ; x .  T r a n s f o r m i n g  t o  t h e  l i m i t  x § X ( t )  + 
0 and introducing as a new dimensionless variable the quantity t -- tx, we have 

l 

c,(t ,  X ( t ) ) - -  2 V ~ -  ~ [z (t) - -  z (~)] exp - -  
4 

0 

t 

OCl x=x(o- 1 f lz ( t ) - - z (T) ]  exp ( t - - T  ) dT 
Ox 4 ] /  ~ 4 (t - -  T) 3/2 + 

0 

t 

+ 4V-----~-, w(T) -~ [ z ( t ) - - zU)  ] exp 4 ( t - - ~ )  1/2 
0 

t 

+ lira ~ ; 
~0 4 ~  

0 

w(~)exp [ ~2 t - - T  ] d~ 
4 (l -- ~) 4 (t -- z) a/e 

(23) 

The equations for the unknowns w(t) and z(t) (or v(t)) are obtained by using Eq. (22) 
as the corresponding perturbations of Eq. (18). Using the relationship between temperature 
perturbations on the front and the crystallization-front velocity, Eq. (i0), we obtain 

c 1 (t, X (t)) = - -  R0v (t) = - -  R0"z (t), (24)  

Oc~ (t,ox X) x=x(t) = Sv(t) = Sz(t); S = - - ( l - - k ) R 0 +  1, (25)  
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where the parameter Ro is defined by Eq. (17), and the quantities on the left side are de- 
fined by Eq. (23). Taking the Laplace transform of Eq. (24), expanding in a Taylor series 

E 1 z(t)--z(~) = ~ .  z(~)(~)(t__~) (26)  

n = l  

and assuming that the integrands of Eq. (23) possess all the properties required in order 
to interchange the order of summation and integration, we arrive at representations of the 
integrals of Eq. (23) in the form of infinite sums of the convolutions of various functions. 
Using theorems on the representation of derivatives and convolutions and tabular represen- 
tations, we obtain for the terms of these sums: 

t 

1 ~ ('~) exp - -  " , 

0 

t 

~-,o 4 ]/-------~ w ('~) exp 4 ( t - - ' c )  4 ( t - - ' Q  a/9 2 '  
O 

I: = [z (t) - -  z ('0l exp 4 (t - -  T)/+1/2 
0 

'-- n[ 
n =  1 

P(n- -]  + l/2) [ ~ p~-iz(~- l ) (0)]  
(P -? 1/4) n-i+l/2 p"Z(p) -- 

i = l  

where W(p) and Z(p) are representations of w(t) and z(t); j = 0, i. 

It is possible to sum the series appearing in the representations of the integrals of 
Eq. (23) by using the fundamental integral concept for the gamma-function, changing the order 
of summation and integration, and summing the series appearing in the integrand. As a re- 
sult, we obtain 

exp 1 e-*x-i-i/idx + 
b+Z(p) p § 4 l+4p 

0 

+ 8V~-4(p), ( 2 7) 

where Jj(p) are some series in powers of p with coefficients dependent on the values of the 
derivatives of z(t) of various order at t = 0. With consideration of Eq. (27) we write the 
Laplace transforms of Eq. (24) as 

? (P) --  -~-- 1 q- Z (p) = Roz (0) 4- 2 Jo (P), 

( ,)[ W(p) I 1 @ (1- -k )Rop- -p- - - -4 - -  ~?(p)+2@ (28)  
2 "e (p) 

+-~p))lZ(p)=--(1--(1--k)Ro)z(O)--2Jl(p)+Jo(p),  ? ( p ) = - V - 1  + 4  p .  

It can easily be seen that the determinant A(p, h) of this system coincides with 
&(X, 0% R) when ~ is replaced by p. A similar correspondence occurs at finite h. The un- 
known representations W(p) and Z(p) can be expressed from a system analogous to Eq. (28) 
as fractions obtained by dividing certain polynomials in p by the determinant A(p, h). In 
the corresponding asymptotic representations of the originals w(t) and z(t) as t § oo there 
appear terms containing the exponential factor expmt) where m is the root of the equation 
A(~, h) R) = 0. In view of the unique correspondence of the determinant A(k, h, R) to the 
determinant A(p, h) the stability analysis performed above proved justifiable. We note 
that an analogous result is also obtained in the case in which in place of expansion (26) 
we use exponential representations of w(t) and z(t) in Eq. (23). 
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It can be shown that the conclusion of system stability or instability does not depend 
on whether polynomials Jj(p) with form determined by initial conditions for the time deriva- 
tives of the front coordinate are considered or not considered in Eq. (28). Such time de- 
rivatives depend on the initial condition imposed on the concentration perturbation in the 
region x > X(t), i.e., the exact form of the initial condition does not affect the appear- 
ance of instability, as was proposed above. 

NOTATION 

a, thermal diffusivity coefficient in melt; bo, b', b", parameters introduced in Eqs. 
(8) and (ii), respectively; C, specific heat of melt; c, ci, dimensionless concentration and 
its perturbation; c*, 6*, parameters introduced in Eq. (6); D, diffusion coefficient; H, 
length of region occupied by melt; h, dimensionless length of region occupied by melt; J, 
function introduced in Eq. (27); k, impurity distribution coefficient; L, specific heat of 
phase transition; m, slope of liquidus line; R, Ro, S, parameters introduced in Eqs. (ii), 
(17), (25); T, dimensionless temperature; t, dimensionless time; u, crystallization-front 
velocity; v, w, perturbations of dimensionless velocity and quantity ~; x, dimensionless 
coordinate; X, z, dimensionless coordinate and its perturbation; ~, effective heat-transfer 
coefficient; 6, parameter introduced in Eq. (8); y, function introduced in Eq. (15); A, 
characteristic determinant of Eq. (12); e, parameter introduced in Eq. (6); e, e,, el, 
temperature, temperature on phase-transition front of pure melt, and external heat-sink 
temperature; Ae:, Ae2, temperature differentials introduced in Eq. (7); %1, thermal con- 
ductivity coefficient in melt; %, parameter introduced in Eq. (14); ~, function introduced 
in Eq. (19); ~, coordinate; p, melt density; ~, impurity concentration by weight; T, time, 
~, temperature at front; ~, function introduced in Eq. (14). Subscripts: 0, steady-state 
solidification regime; ~, value far from front. 
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